Analyzing Visual Semantic Processing and Recognizing the Shape Changes in Video
نویسندگان
چکیده
How does the brain work? How do we recognize things? These are one of the few mystery of the world which has bothered the cognitive researchers for years and continue to haunt them. In this project, we try to analyze the visual semantic processing of the objects of different shapes in the brain. We show the people videos with changing shapes and analyze their brain signals to see the effects of these changes in the brain signals. Then we train computer by machine learning approach to identify the change in videos just by classifying and recognizing these signals. We also try to see the evoked potentials in an event related potential when a person sees a normal video and try to analyze these evoked potentials to find the area of semantic processing.
منابع مشابه
Compressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard
Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...
متن کاملBelievable Visual Feedback in Motor Learning Using Occlusion-based Clipping in Video Mapping
Gait rehabilitation systems provide patients with guidance and feedback that assist them to better perform the rehabilitation tasks. Real-time feedback can guide users to correct their movements. Research has shown that the quality of feedback is crucial to enhance motor learning in physical rehabilitation. Common feedback systems based on virtual reality present interactive feedback in a monit...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملSemantic Priming Effect on Relative Clause Attachment Ambiguity Resolution in L2
This study examined whether processing ambiguous sentences containing relative clauses (RCs) following a complex determiner phrase (DP) by Persian-speaking learners of L2 English with different proficiency and working memory capacities (WMCs) is affected by semantic priming. The semantic relationship studied was one between the subject/verb of the main clause and one of the DPs in the complex D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003